Cold Drawn Drilling Tubes – Check Out Further To Make A Knowledgeable Choice..

Low alloy steel welded pipes buried in the ground were sent for failure analysis investigation. Failure of steel pipes was not brought on by tensile ductile overload but resulted from low ductility fracture in the area of the weld, which contains multiple intergranular secondary cracks. The failure is most probably associated with intergranular cracking initiating from the outer surface within the weld heat affected zone and spread with the wall thickness. Random surface cracks or folds were found across the Anticorrosion 3pe Coating Pipe. Sometimes cracks are emanating through the tip of such discontinuities. Chemical analysis, visual inspection, optical microscopy and SEM/EDS analysis were used as the principal analytical approaches for the failure investigation.

Low ductility fracture of welded pipes during service. ? Investigation of failure mechanism using macro- and microfractography. Metallographic evaluation of transverse sections near the fracture area. ? Evidence of multiple secondary cracks in the HAZ area following intergranular mode. ? Presence of Zn within the interior from the cracks manifested that HAZ sensitization and cracking occurred before galvanizing process.

Galvanized steel tubes are used in lots of outdoors and indoors application, including hydraulic installations for central heating system units, water supply for domestic and industrial use. Seamed galvanized tubes are fabricated by low alloy steel strip being a raw material followed by resistance welding and hot dip galvanizing as the most suitable manufacturing process route. Welded pipes were produced using resistance self-welding in the steel plate by applying constant contact pressure for current flow. Successive pickling was realized in diluted HCl acid bath. Rinsing of the welded tube in degreasing and pickling baths for surface cleaning and activation is required before hot dip galvanizing. Hot dip galvanizing is performed in molten Zn bath at a temperature of 450-500 °C approximately.

A number of failures of underground galvanized steel pipes occurred after short-service period (approximately 1 year after the installation) have triggered leakage and a costly repair in the installation, were submitted for root-cause investigation. The topic of the failure concerned underground (buried in the earth-soil) pipes while faucet water was flowing inside the Welded Carbon Steel Pipe. Loading was typical for domestic pipelines working under low internal pressure of some number of bars. Cracking followed a longitudinal direction and it was noticed in the weld zone area, while no macroscopic plastic deformation (“swelling”) was observed. Failures occurred to isolated cases, and no other similar failures were reported inside the same batch. Microstructural examination and fractographic evaluation using optical and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (EDS) were mainly used in the context of the present evaluation.

Various welded component failures associated with fusion and heat affected zone (HAZ) weaknesses, such as hot and cold cracking, lack of penetration, lamellar tearing, slag entrapment, solidification cracking, gas porosity, etc. are reported inside the relevant literature. Lack of fusion/penetration leads to local peak stress conditions compromising the structural integrity of the assembly at the joint area, while the actual existence of weld porosity leads to serious weakness from the fusion zone [3], [4]. Joining parameters and metal cleanliness are considered as critical factors towards the structural integrity of the welded structures.

Chemical analysis of the fractured components was performed using standard optical emission spectrometry (OES). Low-magnification inspection of surface and fracture morphology was performed using a Nikon SMZ 1500 stereomicroscope. Microstructural and morphological characterization was conducted in mounted cross-sections. Wet grinding was performed using successive abrasive SiC papers as much as #1200 grit, accompanied by fine polishing using diamond and silica suspensions. Microstructural observations completed after immersion etching in Nital 2% solution (2% nitric acid in ethanol) then ethanol cleaning and hot air-stream drying.

Metallographic evaluation was performed employing a Nikon Epiphot 300 inverted metallurgical microscope. Furthermore, high magnification observations in the microstructure and fracture topography were conducted to ultrasonically cleaned specimens, working with a FEI XL40 SFEG scanning electron microscope using secondary electron and back-scattered imaging modes for topographic and compositional evaluation. Energy dispersive X-ray spectroscopy utilizing an EDAX detector was utilized to gold sputtered dkmfgb for local elemental chemical analysis.

An agent sample from failed steel pipes was submitted for investigation. Both pipes experience macroscopically identical failure patterns. A characteristic macrograph from the representative fractured pipe (27 mm outer diameter × 3 mm wall thickness) is shown in Fig. 1. Because it is evident, crack is propagated to the longitudinal direction showing a straight pattern with linear steps. The crack progressed next to the weld zone in the weld, probably after the heat affected zone (HAZ). Transverse sectioning in the tube ended in opening of the with the wall crack and exposure of the fracture surfaces. Microfractographic investigation performed under SEM using backscattered electron imaging revealed a “molten” layer surface morphology that was due to the deep penetration and surface wetting by zinc, since it was recognized by EDS analysis. Zinc oxide or hydroxide was formed as a consequence of the exposure of Structure Steel Pipe for the working environment and humidity. The above findings as well as the detection of zinc oxide on the on the fracture surface suggest strongly that cracking occurred just before galvanizing process while no static tensile overload during service may be viewed as the key failure mechanism.

Rise Steel consisted of subsidaries of Cangzhou Spiral Steel Pipe Factory, Hebei All Land Steel Pipe Factory, Hebei Yuancheng Steel Pipe Factory, Cangzhou Xinguang Thermal Insulation Pipe Factory .The company is located in Tianjin port, the largest comprehensive port and an important foreign trade port, engaging in the management of steel pipe production nearly 20 years.The company is a high-tech enterprise intigrated with independent production and sales business.We are committed to the concept of “innovation, technology and service”.

Contact Us:
Address: APT. 1202 BLDG. B Kuang Shi Guo Ji Plaza, Tianjin Free Trading Testing Zone (Business Center), Tianjin, China.
Hamer Chen:sales0@rise-steel.com
Eason Gao: sales1@rise-steel.com
Miao lin: sales2@rise-steel.com
Amy Shi: sales5@rise-steel.com
Hamer Chen:+86 18202505824
Eason Gao: +86 18622403335
Miao lin: +86 13251845682
Amy Shi: +86 18630426996

Leave a Reply

Your email address will not be published. Required fields are marked *